Sunday, 22 May 2016

CHARACTERISTICS OF DIGITAL AGE


Characteristics of digital age

Information Age also known as the Computer Age, or Digital age is a period in human history characterized by the shift from traditional industry that the Industrial Revolution brought through industrialization, to an economy based on information computerization. The onset of the Information Age is associated with the Digital Revolution, just as the Industrial Revolution marked the onset of the Industrial Age.

During the information age, the phenomenon is that the digital industry creates a knowledge-based society surrounded by a high-tech global economy that spans over its influence on how the manufacturing throughput and the service sector operate in an efficient and convenient way. In a commercialized society, the information industry is able to allow individuals to explore their personalized needs, therefore simplifying the procedure of making decisions for transactions and significantly lowering costs for both the producers and buyers. This is accepted overwhelmingly by participants throughout the entire economic activities for efficacy purposes, and new economic incentives would then be indigenously encouraged, such as the knowledge economy

The Information Age formed by capitalizing on computer microminiaturization advances. This evolution of technology in daily life and social organization has led to the fact that the modernization of information and communication processes has become the driving force of social evolution.

Library expansion

Library expansion was calculated in 1945 by Fremont Rider to double in capacity every 16 years, if sufficient space were made available. He advocated replacing bulky, decaying printed works with miniaturized microform analog photographs, which could be duplicated on-demand for library patrons or other institutions. He did not foresee the digital technology that would follow decades later to replace analog microform with digital imaging, storage, and transmission media. Automated, potentially lossless digital technologies allowed vast increases in the rapidity of information growth. Moore's law, which was formulated around 1965, calculated that the number of transistors in a dense integrated circuit doubles approximately every two years.

The proliferation of the smaller and less expensive personal computers and improvements in computing power by the early 1980s resulted in a sudden access to and ability to share and store information for increasing numbers of workers. Connectivity between computers within companies led to the ability of workers at different levels to access greater amounts of information.

Information storage

The world's technological capacity to store information grew from 2.6 (optimally compressed) exabytes in 1986 to 15.8 in 1993, over 54.5 in 2000, and to 295 (optimally compressed) exabytes in 2007. This is the informational equivalent to less than one 730-MB CD-ROM per person in 1986 (539 MB per person), roughly 4 CD-ROM per person of 1993, 12 CD-ROM per person in the year 2000, and almost 61 CD-ROM per person in 2007.

Information transmission

The world's technological capacity to receive information through one-way broadcast networks was 432 Exabyte’s of (optimally compressed) information in 1986, 715 (optimally compressed) Exabyte’s in 1993, 1.2 (optimally compressed) zettabytes in 2000, and 1.9 zettabytes in 2007 (this is the information equivalent of 174 newspapers per person per day). The world's effective capacity to exchange information through two-way telecommunication networks was 281 pet bytes of (optimally compressed) information in 1986, 471 petabytes in 1993, 2.2 (optimally compressed) Exabyte’s in 2000, and 65 (optimally compressed) exabytes in 2007 (this is the information equivalent of 6 newspapers per person per day). In the 1990s, the spread of the Internet caused a sudden leap in access to and ability to share information in businesses and homes globally. Technology was developing so quickly that a computer costing $3000 in 1997 would cost $2000 two years later and.

 BY

JOHN, CAFRENE. BAPRM 42567

3 comments: